Correlation of Leucine-Rich-α-2-Glycoprotein- 1 (LRG-1) Level in Urine with Cervical Cancer Stage, Histology Type and Histology Grading
Abstract
Objective: To determine if the level of LRG-1 in urine correlates with cervical cancer stage, histology type and histology grading
Method: This cross-sectional study using ELISA to test urinary LRG-1 of 59 cervical cancer patients. Data were analyzed using Kruskal-Wallis test.
Results: From the total of 59 samples, LRG-1 in urine ranged from 0.48 ng/mL to 170.43 ng/mL, with median value 58.42 ng/mL. A median value of 21.42±52.29 ng/mL was found in the urine at early stage and 115.32±59.36 ng/mL at advanced stage. Most patients had cervical cancer at advanced stage (69.4%), squamous cell carcinoma (66.1%), and grade cannot be assessed (45.8%). Median LRG-1 levels were highest in squamous cell carcinoma (66.42±60.89 ng/mL) and poorly differentiated (127.74 ±54.13 ng/mL). LRG-1 levels were significantly correlated with cervical cancer stage (p-value=0.045) but not histological type (p-value=0.940) or histopathological grade (p-value=0.488).
Conclusion: The more advanced the cervical cancer stage, the more elevated urinary LRG-1 levels. LRG-1 contributes to angiogenesis and antiapoptotic processes in cancer. Further studies are required to identify and evaluate LRG-1 in urine as an important biomarker for making clinical decisions and developing potential treatments.
Hubungan Kadar Protein Leucine-Rich-α-2-Glycoprotein-1 (LRG-1) Urine dengan Stadium, Tipe Histologis, dan Derajat Diferensiasi Kanker Serviks
Abstrak
Tujuan: Untuk mengetahui hubungan kadar LRG-1 dalam urine dengan stadium, tipe histologis, dan derajat diferensiasi kanker serviks.
Metode: Studi ini menggunakan desain penelitian cross-sectional pada 59 perempuan yang telah didiagnosis kanker serviks, kemudian diperiksa kadar protein LRG-1 dalam urine dengan metode ELISA. Uji statistik menggunakan Kruskal Wallis.
Hasil: Dari total 59 sampel didapatkan kadar LRG-1 dalam urine terendah 0,48 ng/mL dan tertinggi 170,43 ng/mL, nilai median 58,42 ng/mL. Nilai median pada stadium awal 21,42±52,29 ng/mL dan stadium lanjut 115,32±59,36 ng/mL. Lebih banyak penderita mengalami kanker serviks pada stadium lanjut (69,4%), tipe histopatologis Squamous Cell Carcinoma (66,1%), derajat diferensiasi tidak dapat ditentukan (45,8%). Median tertinggi kadar LRG-1 pada tipe Squamous Cell Carcinoma (66,42±60,89 ng/mL), dan derajat diferensiasi yang buruk (127,74±54,13 ng/mL). Terdapat hubungan yang signifikan antara kadar LRG-1 dan stadium kanker serviks (nilai p = 0,045), tetapi tidak dengan tipe histologis (nilai p=0,940) dan derajat diferensiasi (nilai p=0,488).
Kesimpulan: Semakin tinggi stadium maka semakin tinggi kadar protein LRG-1 dalam urine. LRG-1 berperan dalam proses angiogenesis dan antiapoptosis pada kanker. Diperlukan penelitian lebih lanjut agar identifikasi dan evaluasi biomarker LRG-1 urine dapat menjadi penanda penting yang membantu dalam pengambilan keputusan klinis, serta pengembangan terapi.
Kata Kunci: Derajat diferensiasi, Kanker serviks, LRG-1, Stadium, Tipe histologis
Keywords
Full Text:
PDFReferences
GLOBOCAN. Cervical Cancer : Estimated Incidence, Mortality and Prevalence. Global Cancer Obsrvatory [Internet]. 2018. Available from: http://globocan.iarc.fr/Pages/fact_-sheets_cancer.aspx.
Profil kesehatan Sulawesi Selatan. Makassar. Dinas Kesehatan Provinsi Sulawesi Selatan [Internet]. 2017. Available from: http://dinkes.sulselprov.go.id/assets/dokumen/informasi/05ae4d9b9299f08a5a50912efefca741.pdf.
Utami TW, Andrijono A, Putra A, Indarti J, Fleuren G, Jordanova E, et al. Possible different genotypes for human papillomavirus vaccination in lower middle-income countries towards cervical cancer elimination in 2030: A cross-sectional study. Clin Exp Vaccine Res. 2022;11(2):141-8.
Plummer M, Schiffman M, Castle PE, Maucort-Boulch D, Wheeler CM. Group A: a 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. J Infect Dis. 2007;195(11):1582-9.
WHO. Comprehensive cervical cancer control : A guide to essential practice: World Health Organization; 2014.
Nuranna L. Skrining Kanker serviks dengan IVA (dikembangkan dengan DOVIA dan TELEDOVIA). 1 ed. Jakarta: PT. Bina Pustaka Sarwono; 2019.
Hoppenot M, Stampler K, Dunton C. Cervical cancer screening in high- and low-resource countries: implications and new developments. CME Review Article. 2012;67(10):658-66.
Pornjarim N, Jira C, Anant K, Piyawat L, Pairoj J, Yong P. Comparison of human papillomavirus (HPV) detection in urine and cervical swab samples using the HPV Geno Array Diagnostic assay. Peer J. 2017;5(e3910).
Keer SV, Pattyn J, Tjalma WAA, Ostade XV, Leven M, Damme PV, et al. First-void urine: A potential biomarker source for triage of high-risk human papillomavirus infected women. Eur J Obstet Gynecol Reprod Biol. 2017;216:1-11.
Chokchaichamnankit D, Watcharatanyatip K, Subhasitanont P, Weeraphan C, Keeratichamroen S, Sritana N, et al. Urinary biomarkers for the diagnosis of cervical cancer by quantitative label-free mass spectrometry analysis. Oncol Lett. 2019;17(6):5453-68.
Smith CR, Batruch I, Bauça JM, Kosanam H, Ridley J, Bernardini MQ, et al. Deciphering the peptidome of urine from ovarian cancer patients and healthy controls. Clinical Proteomics. 2014;11(23):2-10.
Li Y, Zhang Y, Qiu F, Qiu Z. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis. 2011;32(15):1976-83.
Weivoda S, Andersen JD, Skogen A, Schlievert PM, Fontana D, Schacker T, et al. Elisa for human serum leucine-rich alpha-2-glycoprotein-1 employing cytochrome c as the capturing ligand. J Immunol Methods. 2008;338(1):22-9.
Tang Y, Ling N, Li S, Huang J, Zhang W, Zhang A, et al. A panel of urine-derived biomarkers to identify sepsis and distinguish it from systemic inflammatory response syndrome. Int J Mol Sci. 2018;19(3363):1-16.
Wang X, Abraham S, McKenzie JAG, Jeffs N, Swire M, Tripathi VB, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-b signalling. Nature. 2013;499(7458):1-21.
Zhang Q, Huang R, Tang Q, Yu Y, Huang Q, Chen Y, et al. Leucine-rich alpha-2-glycoprotein-1 is up-regulated in colorectal cancer and is a tumor promoter. OncoTargets and Therapy. 2018;11:2745-52.
Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatmen and follow -up. ESMO Clinical Practice Guidelines. 2018;28(29):72-83.
Berek JS, Hacker NF. Berek and Hacker’s Gynecologic Oncology. 7 ed. Philadelphia: Wolter Kluwer Health; 2020.
Tosi GM, Orlandini M, Galvani F. The controversial role of TGF-ß in neovascular age-related macular degeneration pathogenesis. Int J Mol Sci. 2018;19(3363).
Kim SH, Co SH. Assessment of pelvic lymph node metastasis in FIGO IB and IIA cervical cancer using quantitative dynamic contrast-enhanced MRI parameters. Diagn Interv Radiol. 2020;26(5):382-289.
Surinova S, Choi M, Tao S, Schüffler PJ, Chang C-Y, Clough T, et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med. 2015;7(9):1166-78.
Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, et al. Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One. 2018;13(3):1-22.
Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM, et al. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-b signalling pathway. Carcinogenesis. 2012;33(5):976-85.
Xiao S, Zhu H. Leucine-Rich Alpha-2-Glycoprotein1 Gene Interferes with Regulation of Apoptosis in Leukemia KASUMI-1 Cells. Med Sci Monit. 2018;24:8348-56.
Xie Z-B, Zhang Y-F, Jin C, Mao Y-S, Fu D-L. LRG-1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/ p38 signaling. J Exp Clin Cancer Res. 2019;38(75):1-12.
Zhong D, Zhao S, He G, Li J, Lang Y, Ye W, et al. Stable knockdown of LRG1 by RNA interference inhibits growth and promotes apoptosis of glioblastoma cells in vitro and in vivo. Tumour Biol. 2015;36(6):4272-8.
Camilli C, Hoeh AW, Rossi GD, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci. 2022;29(6):2-29.
Zhang J, Zhu L, Fang J, Ge Z, Li X. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res. 2016;35(29):2-11.
O’Connor MN, Kallenberg DM, Camilli C, Pilotti C, Dritsoula A, Jackstadt R, et al. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. Clinical and Translational Article. 2021;2(11):1231-52.
Jenkins D. Histopathology and cytopathology of cervical cancer. Dis Markers. 2007;23(4):199-212.
Lax S. Histopathology of cervical precursor lesions and cancer. Acta Dermatovenerol Alp Pannonica Adriat. 2011;20(3):125-33.
Jung EJ, Byun JM, Kim YN, Lee KB, Sung MS, Kim KT, et al. Cervical Adenocarcinoma Has a Poorer Prognosis and a Higher Propensity for Distant Recurrence Than Squamous Cell Carcinoma. Int J Ginecol Cancer. 2017;27(6):1228-36.
Hu K, Wang W, Liu X, Meng Q, Zhang F. Comparison of treatment outcomes between squamous cell carcinoma and adenocarcinoma of cervix after definitive radiotherapy or concurrent chemoradiotherapy. Radiat Oncol. 2018;13(249):2-7.
Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G. Key Molecular Events in Cervical Cancer Development. Medicina. 2019;55(7):384-97.
Jemmerson R, Staskus K, Higgins L, Conklin K, kelekar A. Intracellular leucine-rich alpha-2-glycoprotein-1 competes with Apaf-1 for binding cytochrome c in protecting MCF-7 breast cancer cells from apoptosis. Apoptosis. 2021;26(1-2):71-82.
DOI: http://dx.doi.org/10.24198/obgynia.v6i2.489
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.